Reg. No.:					
-----------	--	--	--	--	--

Question Paper Code: 53249

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fourth Semester

Electronics and Communication Engineering

MA 6451 — PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering / Robotics and Automation Engineering)

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Use of statistical tables is permitted.

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define discrete and continuous random variable.
- 2. Write moment generating function of binomial distribution.
- 3. If X and Y are independent random variables then show that E(Y/X) = E(Y) and E(X/Y) = E(X).
- 4. State about types of correlation.
- 5. Write about classification of random process.
- 6. Define independence increment process.
- 7. Define cross correlation function.
- 8. Write any two properties of cross power spectral density.
- 9. Define the time invariant linear system.
- 10. Find the ACF of stationary process whose PSD is given by $S_{xx}(w) = \begin{cases} w^2 & \text{for} & |w| \le 1\\ 0 & \text{otherwise} \end{cases}$

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) In a normal distribution 31% of the items are under 45 and 8% are over 64 find the mean and Standard deviation of the distribution.

Or

- (b) The average number of traffic accidents on a certain sections of a highway is two per week, Assume that the number of accidents follows a Poisson distribution. Find the probability of (i) no accident in a week (ii) atmost two accidents is a 2 week period.
- 12. (a) If X, Y, Z are uncorrelated random variables with mean and standard deviation 5, 12, 9 respectively and if U = X + Y, V = X + Y find the correlation coefficient between U and V.

Or

- (b) Let X and Y are normally distributed independent random variables with mean 0 and variance σ^2 . Find the joint pdf of $R = (X^2 + Y^2)^{1/2}$ and $\theta = \tan^{-1}(Y/X)$.
- 13. (a) Define random telegraph process. Prove that it is a wide-sense stationary.

Or

- (b) Discuss the stationary of the random process $X(t) = A(\cos w_0 t + \theta)$ is uniformly distributed random variable in $(0, 2\pi)$.
- 14. (a) The power spectral density of a random process is given by $S_{xx}(w) = \begin{cases} \pi, & |w| < 1 \\ 0 & elsewhere \end{cases}$ Find its auto correlation function.

Or

- (b) The cross power spectrum of real random processes $\{X(t)\}$ and $\{Y(t)\}$ is given by $S_{xy}(w) = \begin{cases} a+j.bwj, & |w| < 1 \\ 0 & elsewhere \end{cases}$
- 15. (a) Find the cross correlation function X(E) is the input voltage to a circuit system and Y(t) is the output voltage $\{X(t)\}$ is a stationary random process with $\mu_X=0$ and $R_{XX}(\tau)=e^{-\alpha|\tau|}$. Find μ_γ , $S_{yy}(w)$ and $R_{YY}(\tau)$ if the power transfer function is H(w)=R/(R+iLw).

Or

(b) If $\{N(t)\}$ is a band limited white noise such that $S_{NN}(w) = N_0/2$ for $|w| < W_B$ and zero otherwise. Find the auto correlation function.